Энциклопедия сантехника Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе

resant.ru / Сантехника / Гидравлика и теплотехника / Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа. Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления.

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

h-потеря напора здесь она измеряется в метрах.
λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже.
L-длина трубопровода измеряется в метрах.
D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с2

А теперь поговорим о коэффициенте гидравлического трения.

Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.

Напомню эту формулу (она применима только к круглым трубам):

V-Скорость потока жидкости. Измеряется [Метр/секунда].
D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Здесь Δэ — Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа [мм] с [м].

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться «эквивалентом шероховатости труб» и не как иначе, а то результат будет ошибочный. Эквивалент означает — средняя высота шероховатости.

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Вообще в целом, эти формулы показывают и доказывают, что при увеличении скорости или увеличении расхода, всегда увеличивается сопротивление движению потока жидкости, то есть увеличиваются потери напора. Причем увеличиваются не пропорционально, а квадратично. Это говорит о том, что единица увеличения расхода не соответствует затратам на потерю напора. То есть иметь большую скорость потока жидкости в трубе экономически не целесообразно. Поэтому бывает дешевле увеличить диаметр потока. В других статьях обязательно опишу, как посчитать, какой диаметр нам необходим.

Таблица: (Эквивалент шероховатости)

Кому интересно узнать (Эквивалент шероховатости ) для металлопластика, полипропилена и сшитого полиэтилена, то это соответствует и относится к пластмассам. То есть в таблице характеристика будет: Пластмассовые (полиэтилен, винипласт).

Так же хочу обратить внимание, на то, что со временем, на внутренних станках труб, образуется налет, что увеличивает шероховатость труб. Так что имейте ввиду что со временем потери напора только увеличиваются.

Таблица: (Кинематическая вязкость воды)

График:

Как видно из графика, что при повышении температуры кинематическая вязкость уменьшается, а это значит, что и сопротивление движению воды уменьшается. Это значит, что при потоке горячей воды, «потери напора» будут меньше чем при потоке холодной воды. Кто живет в многоквартирных домах, если обратит внимание, то скорость и напор горячей воды всегда выше чем напор холодной воды. Есть исключения, но в большинстве случаев это так. Теперь вы понимаете, почему это так.

А теперь давайте решим задачу:

Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м3/с, длина трубы L=900м, температура t=16°С.

Дано:
D=500мм=0.5м
Q=2 м3/с
L=900м
t=16°С
Жидкость: H2O
Найти: h-?

Видео:

Купить программу

Решение: Для начала найдем скорость потока в трубе по формуле:

V=Q/ω

Сдесь ω — площадь сечения потока. Находится по формуле:

ω=πR2=π(D2/4)=3.14*(0,52/4)=0,19625 м2

V=Q/ω=2/0,19625=10,19 м/с

Далее находим число Рейнольдса по формуле:

Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10-6=0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.

λ=0,11(Δэ/D)0,25=0,11*(0,00025/0,5)0,25=0,01645

Далее завершаем формулой:

h=λ*(L*V2)/(D*2*g)=0,01645*(900*10,192)/(0,5*2*9,81)=156,7 м.

Ответ: 156,7 м. = 1,567 МПа.

Также хочу обратить внимание на то, что мы в задаче рассматривали трубу которая на всей своей длине имеет горизонтальное положение.

Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Мы рассмотрели потерю напора по длине трубопровода, также существуют местные сопротивления в виде заужения и поворотов, которые тоже влияют на потерю напора. О них будет описано в других моих статьях. И я обязательно приготовлю статью о том как подобрать насос по напору, чтобы удовлетворить требования расхода жидкости, в зависимости от потерь напора. Если что-то не понятно пишите в комментарии, обязательно отвечу!

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Скачать калькулятор расчетов гидравлического сопротивления.

Следующая статья: Местные гидравлические сопротивления

В разделе ремонт отопления, можете подробно ознакомиться с нашими услугами. Что мы делаем:

  • работаем круглосуточно;
  • собственная аварийная служба;
  • большое количество офисов по Москве и Московской области;
  • используем только профессиональный инструмент;
  • гарантия на выполненные работы;
  • сервисное обслуживание систем отопления.

ООО ДИЗАЙН ПРЕСТИЖ

Надежный помощник по ремонту отопления.

+7(495)744-67-74

Рассчитать стоимость отопления можно в разделе калькулятор отопления

Узнать подробнее про водоснабжение

Ознакомиться с котельными тут

Оцените статью
Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.